
Improving the Survivability of Interdependent
Networks by Restructuring Dependencies

Genya Ishigaki, Riti Gour, and Jason P. Jue
Department of Computer Science, The University of Texas at Dallas, Richardson, Texas 75080, USA

Email: {gishigaki, rgour, jjue}@utdalls.edu

Abstract—This paper studies a network design problem to
improve the survivability of interdependent networks by restruc-
turing the dependencies. As different types of networked systems
become more integrated, the relation between distinct kinds
of network devices has become more intertwined. In order to
guarantee the robustness of such systems, survivability problems
of interdependent networks must be addressed. A characteristic
of the proposed algorithm is that the continuous availability of the
entire system is guaranteed by the preservation of certain struc-
tures in the original networks during the restructuring process.
Simulation results demonstrate that the restructuring heuristic
can substantially enhance the survivability of interdependent
networks.

Keywords—interdependent networks; survivability; cascading
failure; cyber-physical systems.

I. INTRODUCTION

Recent infrastructure or cyber-physical systems are likely to
demonstrate greater integrations with other types of systems
in order to provide more intelligent and flexible operations. A
recent study indicates that different kinds of infrastructures
rely upon each other in complex manners [1]. A typical
example is smart electricity grids, which exploit a computer
network to control an electricity network for efficient control
and management.

Additionally, the concept of Anything as a Service (XaaS),
which promotes delivery of services to users without revealing
physical or implementation details, has accelerated the amount
of layering and obscure dependencies in networks. This ten-
dency is likely to be more evident for next-generation network
systems.

However, it has been revealed that certain types of de-
pendencies between different networks can deteriorate robust-
ness of the entire tangled systems [2]. Consecutive multiple
failure phenomena called cascading failures exemplify the
unique fragility of such systems. In networks without in-
terdependencies, a failure would influence a certain part of
a network. Nonetheless, in networks with interdependencies
between layers, some nodes that are not directly connected
to the failed portion can become nonfunctional because of
the loss of service provisioning from nodes in other layers,
which are directly influenced by the initial failure. Fig. 1-2
show the beginning phase of such a cascading failure, which
starts at the failure of a single node v2 and results in the
entire network failure. Since node v1 loses its supporting
node (v2), it becomes nonfunctional. This induces another
loss of the supporting node of v′2, and eventually the single

v1 v′1 v′′1

v2 v′2 v′′2

G2

G1

Fig. 1. An interdependent net-
work with 2 constituent graphs.

v1 v′1 v′′1

v′2 v′′2

G2

G1

Fig. 2. Initial failure at node
v2 causing a cascading failure.

node failure at v2 causes failure of the whole network. In
fact, It has been reported that a cause of the nation-wide
blackout in Italy in 2003 was a cascading failure induced by
the dependencies between the electricity network and control
information network [3].

In order to understand the characteristics of such networks
with complex dependencies, many contributions have been
made since the first theoretical proposal on the cascading
failure model by Buldyrev et al. in 2010 [4]. The pioneering
work [4] focuses on analyzing the behavior of cascading
failures rather than proposing design strategies. In contrast,
some following works try to identify vulnerable topologies in
interdependent networks to avoid such fragile structures in the
design phase [5], [6]. Furthermore, other works propose design
strategies in more realistic models to consider the impact of
failures caused by a single component [7], integrated factors
within and between layers [8], or the heterogeneity of nodes
in each layer [9].

This paper discusses a design problem for interdependent
networks to improve their survivability, which is a measure of
the robustness against a whole network failure, by modifying
an existing network topology. The contribution that contrasts
our work with other related works is the consideration of
existing network facilities. Our method tries to redesign only
a relatively small part of the existing network to enhance the
survivability so that the entire network remains operational
even during the restructuring process. In order to realize this
continuous availability, the special type of dependencies whose
removal does not influence the functionality of the entire sys-
tem is identified in the first step of our restructuring method.
A heuristic to decide the relocations of these dependencies is
also proposed. Our method is evaluated by the simulations in
different pseudo interdependent networks.

This is the author’s version of an article that has been published in the proceeding of IEEE ICC
2018. Changes were made to this version by the publisher prior to publication. The final version is

available at https://doi.org/10.1109/ICC.2018.8422614 .

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission

must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

II. RELATED WORKS

The work in [10] analyzes the survivability of interdepen-
dent networks. The authors propose heuristic and ILP based
methods to approximate the survivability. The work focuses on
defining and estimating the survivability, and does not discuss
the design aspect of interdependent networks. Therefore, our
work proposes a method improving the survivability, adopting
the definition discussed in this related work.

The work in [5] identifies the influence of certain topologi-
cal characteristics on cascading failures. A method to evaluate
the importance of nodes for network robustness is proposed
in [6] by introducing a boolean algebraic representation. The
work in [8] considers dependency relations not only between
layers but also within a single layer. In [9], the heterogeneity
of nodes in each network is taken into account. Zhao et al.
[7] formulate an optimization problem enhancing the system
robustness using an ILP.

The existing works on designing interdependent networks
[5]–[9] assume that an entire network is designed and con-
structed at the same time, though it seems difficult to redesign
all the systems simultaneously in practical infrastructure net-
works. Thus, our paper is aimed at propounding a method to
redesign a portion of an existing network so that the network
can be functional even during the redesign. In general, an
infrastructure network is amended over time and needs to
work with the integration of new and legacy facilities. Our
improvement scheme would reduce the cost of survivability
improvement in contrast to the entire reconstruction of the
systems.

III. MODELING AND MOTIVATING EXAMPLE

This section explains a mathematical model to discuss
interdependent networks and presents a motivating example
of our method. Section III-B summarizes a related work [10]
defining the survivability for interdependent networks, which
we adopt to evaluate the networks.

A. Network Model

An interdependent network consists of k constituent graphs
Gi = (Vi, Eii) (1 ≤ i ≤ k) that have interdependency
relationships which are defined by sets of (directed) arcs
Aij (1 ≤ i, j ≤ k, i 6= j) representing the dependency
relationship between a pair of nodes in different graphs.
Edges in Eii ⊆ Vi × Vi are called intra-edges because they
connect pairs of nodes in a same network. In contrast, arcs in
Aij ⊆ Vi × Vj (i 6= j) called inter- or dependency arcs. If
there exists an arc (vi, vj) ∈ Aij (vi ∈ Vi, vj ∈ Vj), it means
that a node vj has dependency on a node vi. Then, the node vi
is called the supporting node, and vj is a supported node. A
node v is said to be functional iff it has at least one functional
supporting node.

In order to emphasize the dependency between constituent
graphs, an interdependent network can be represented as a
single layer directed graph G = (V,A), where V :=

⋃
i Vi,

and A :=
⋃

{(i,j)|i 6=j} Aij by abbreviating intra-edges. With
this notation, a node v is said to be functional iff the node v

C2C1

v1

v3

v4v5

v6

v7

v8

v9

v2

Fig. 3. Graph G with (v1, v9).

v

v

vv

v

v

v

v

v

C2C1

v1

v3

v4v5

v6

v7

v8

v9

v2

C3

Fig. 4. Graph G′ with (v1, v6).

satisfies degin(v) ≥ 1. Note that all the discussions in the rest
of this paper follow this single layer graph representation.

B. Survivability of Interdependent Networks

Parandehgheibi et al. [10] propose an index that quantifies
the survivability of interdependent networks against cascading
failures exploiting the cycle hitting set. They prove that a
graph needs to have at least one directed cycle in order to
maintain some functional nodes; in other words, the existence
of one cycle prevents an interdependent network from its entire
failure. Thus, the survivability of interdependent networks
is evaluated based on the cardinality of the minimum cycle
hitting set whose removal makes the corresponding graph
acyclic. Formally, a cycle hitting set H is a set of nodes
such that any cycle C = (V (C), E(C)) in a given graph
G = (V,A) has at least one node in the hitting set:

H(G) := {v | ∀C ∈ C(G) ∃v ∈ V s.t. v ∈ V (C)}, (1)

where C(G) is the set of all cycles in the given graph.

C. Motivating Example

Adopting the survivability definition shown above, improve-
ment of survivability would be equivalent to the increase in the
number of independent cycles in a graph. Fig. 3 and 4 show
an example comparing two similar interdependent networks.

In graph G in Fig. 3, there exists two cycles (C1, C2). If
either v2 or v5, which are in both V (C1) and V (C2), becomes
nonfunctional because of a failure, all the nodes in G even-
tually lose their supporting nodes and become nonfunctional.
On the other hand, a cycle C3 is resilient to the failure at
node v2 or v5 in G′ in Fig. 4. Therefore, the graph G′ is more
survivable than G: 1 = |H(G)| < |H(G′)| = 2 although
they differ only in the destination node of one dependency arc
((v1, v9) or (v1, v6)). Supposing that G is an existing topology
of a network, a method that relocates (v1, v9) to (v1, v6) can
achieve the enhancement of the survivability.

IV. PROBLEM FORMULATION

A. Assumptions

This paper deals with the case in which interdependent
networks have two types of homogeneous constituent networks
with identical dependencies (k = 2). However, our discussion
with the restriction on k can be easily extended to more general
cases. Also, in advanced network models, each constituent
network can have different types of nodes, such as generating

and relay nodes, which are independently functional and need
provisions from a generating node via paths of intra-edges,
respectively [9]. Nevertheless, for simplicity, this work follows
the assumption in [10] that each node in a constituent network
is directly connected to a single conceptual generating node
that has 100% reliability (homogeneous constituent graphs).
Moreover, it is assumed that each supporting node provides a
unit amount of support that is enough for a supported node
to be operational (identical dependencies), following the same
model in [10].

The definition of the survivability focuses on whether or not
at least a small portion of a network is alive after failures, so
the range or size of the functional network after failures is out
of the scope of this paper. Therefore, in minimal cases, the
surviving network may consist of only two functional nodes
that support each other.

B. Requirement Specification

One aspect contrasting our work to other works is pro-
pounding a method to improve the survivability of existing
interdependent networks by changing some topological struc-
tures, whereas other works assume the case of rebuilding
the entire network topology. Because interdependent networks
are likely to appear in cyber-physical systems, such as smart
infrastructure networks, it seems difficult to redesign all the
dependencies. Thus, our strategy of restructuring a portion of
networks would have an advantage in practical applications.

However, some constraints are required during our re-
structuring process due to the existing systems: continuous
network availability and supporting node capability. Because
the existing network must remain available even during the
relocations of dependency relations, it is necessary to avoid the
loss of all supporting nodes for any node at any stage of the
restructuring. This implies two rules (sufficient and necessary
condition) for the live restructuring.

1) The existing cycles need to remain the same after the
restructuring.

2) Every node maintains at least one incoming dependency
arc at any stage of the restructuring.

Rule 1 is straightforward because some node can lose their
supporting node if a cycle is removed from the network.
Moreover, such a removal can induce cascading failure. Rule
2 is a formal definition for a node to be functional at any stage
of the topology modification.

In addition to guaranteeing the continuous availability, a
number of provisions by each supporting node should remain
the same after the restructuring in order to consider the
capability of each node. The capability could be, for example,
the limit on electricity generation, calculation performance,
or the number of ports available. In formal representation,
degout(v)G = degout(v)G′ for all v ∈ V , where G is an
original graph, and G′ is the graph obtained by the dependency
restructuring.

v1 v2

v3

v4v5v6

v7

v v

v

vvv

v

C2C1

Fig. 5. Original graph G with Marginal Arcs (v2, v3) and (v5, v3).

v1 v2

v3

v4v5v6

v7

C2C1

C3

Fig. 6. Modified graph G′ with a
new arc (v5, v1).

v v

v3

vvv

v v1 v2

v3

v4v5v6

v7

C2C1
C ′

3

Fig. 7. Modified graph G′′ with a
new arc (v2, v4).

C. Restructuring of Dependencies

In order to follow the constraints, it is necessary to classify
the dependency arcs into either changeable or fixed arcs. Rule
1 in Section IV-B regulates the relocation of the dependency
arcs in any directed cycles. Thus, let the arcs that are not in
any cycles in a given directed graph G = (V,A) be called
Marginal Arcs (MAs). Formally, the set M (A of MAs is
defined as

M := {(u, v) | (u, v) /∈ A(C) ∀C ∈ C(G)}. (2)

Lemma 1. A removal of any marginal arc never decreases the
survivability of interdependent networks: |H(G)| ≤ |H(G)|,
where G is a given graph, and G is the graph obtained by the
removal.

Proof sketch. Let M be a set of marginal arcs. From the
definition of MAs (Eq. (2)), the removal of MAs does not
destroy or connect any existing cycles in G = (V,A).
Therefore, |H(G)| = |H(G)|, where G = (V,A \M).

Moreover, appropriate relocations of the removed MAs
could improve the survivability of interdependent networks,
assuring operability during the relocation process and pro-
visioning capability of each node. Let us analyze the effect
of dependency relocations using simple examples in Fig. 5-
7. The given graph G in Fig. 5 has two marginal arcs:
M = {(v2, v3), (v5, v3)}. In order to maintain at least one
supporting node for v3, one of the MAs has to remain the
same, and the other can be relocated. Fig. 6 shows the case
of relocating (v5, v3) to (v5, v1); on the other hand, Fig.
7 indicates the case of relocation of (v2, v3) to (v2, v4).
Even though one new cycle (C3 and C ′

3 respectively) is
formed by the relocation, the modified graphs G′ and G′′

have different survivability: |H(G′)| = 1 (= H(G)), and
|H(G′′)| = 2. This is because the cycles in G′ are not
disjoint with each other: V (C1) ∩ V (C2) ∩ V (C ′

3) 6= ∅; in
contrast, V (C1) ∩ V (C2) ∩ V (C ′′

3) = ∅ in G′′. Therefore, it
could be said that the appropriate relocation for survivability
improvement is forming disjoint cycles.

D. ∆H Problem

This section formulates the ∆H problem, which aims for
enhancement of the survivability of a given interdependent
network by restructuring dependency relationships, consider-
ing the continuous availability and supporting capability of
each node.

Problem 1 (∆H Problem). For a given G = (V,A) and a set
of MAs M ⊂ A, maximize ∆H := |H(G′)|− |H(G)|, where
G′ = (V,A′) is obtained by the relocation of destinations
of the arcs in M , satisfying degout(v)G = degout(v)G′ and
degin(v) ≥ 1 for all v ∈ V .

The ∆H problem contains a subproblem: for a given
constant L and G′′ = (V,A′′) where A′′ is decided by a given
MA assignment, is ∆H larger than L? This subproblem is
NP-complete because of the NP-completeness of the hitting
set problem in bipartite graphs [11].

V. HEURISTIC FOR ∆H PROBLEM

This section proposes a heuristic for the ∆H problem,
which consists of three algorithms: Find-MAs, ∆H , and
Minimal-add algorithms. The Find-MAs algorithm enumerates
all the arcs that match the definition of MAs (Eq. (2)).
With the set of MAs, the ∆H algorithm decides appropriate
relocations of each dependency arcs in the set, considering
disjointness of newly formed cycles, so that it can improve
the network survivability. The Minimal-add algorithm also
determines new destinations of MAs that cannot be relocated
by the ∆H algorithm due to the absence of locations realizing
the disjointness of cycles.

A. Find-MAs Algorithm

The Find-MAs algorithm first distinguishes MAs M , which
are candidate arcs for relocations, and the arcs in directed
cycles in a given graph G = (V,A), employing Johnson’s
algorithm, which enumerates all elementary cycles in a di-
rected graph [12]. It is enough for distinguishing MAs to
obtain elementary directed cycles because any non-elementary
cycle can be divided into multiple elementary cycles. After the
enumeration of cycles in G by Johnson’s algorithm, the set of
MAs is obtained by M ← A \⋃C∈C(G) A(C).

B. ∆H Algorithm

With the set of MAs obtained by Johnson’s algorithm,
the ∆H algorithm (shown in Algorithm 1) relocates the
destinations of MAs, considering disjointness of newly created
cycles. (See Section IV-C.) For each MA (v, w), our algorithm
first checks whether or not the relocation of this MA does not
cause the loss of supports for the current destination (line 3).

If w still has some supporting node after the removal of
(v, w), the next step is determining a new destination for
(v, ·). Our algorithm randomly selects one of the cycles that
contains the source v denoted by C ∈ C(v) (line 5). There can
exist some possible candidate nodes for a new destination in
the cycle C. Thus, the new destination is decided by the size
of a newly formed cycle, which is a result of the relocation

Algorithm 1 ∆H-algorithm(G, l)

Input: interdependent network (directed graph) G = (V,A),
maximum hop l ∈ N (odd)

1: M ← find-MAs(G) # M ⊂ A
2: for each (v, w) ∈M do
3: if degin(w) ≥ 1 after A \ {(v, w)} then
4: while True do
5: pick C ∈ C(v) (randomly)
6: for i← l; i > 0; i← i− 2 do
7: pick u ∈ V (C) : dC(v, u) = i
8: if u /∈ U then
9: A← A \ (v, w) ∪ (v, u)

10: U ← U ∪ {n | dC(v, n) ≤ i}
11: break to next arc in M (line 2)
12: end if
13: end for
14: end while
15: Minimal-add(G, (v, w))
16: end if
17: end for

(line 6, 7). To represent the size of the newly formed cycle,
the distance from a node v to a node u in an (existing)
cycle C in the counter direction is denoted as dC(u, v) in
our pseudo code. When the maximum hop is designated by
l, the algorithm tries to make a new cycle with size l + 1. If
it fails to form the cycle, it decreases the size by 2, which is
the closest location of a same type node in C. Let us think
about an example using a given graph G shown in Fig. 3 and
the restructured graph in Fig. 4. Since the removal of (v1, v9)
does not make v9 lose all the incoming dependency arcs for
it, our algorithm tries to relocate the destination of this arc
to one of the nodes in the cycle C1, which are v2, v6, v8. For
instance, |V (C3)| = 3 + 1, choosing v6 by l = 3; contrarily,
|V (C ′

3)| = 2 if selecting v8 by l = 1.
After selecting a destination candidate u in line 7, our

algorithm checks if u is already used to create a new cycle
(line 8). This is confirmed by a set of nodes U storing all the
nodes that are in newly formed cycles: {n | dC(v, n) ≤ i}
(line 10). For instance in Fig. 4, U ← U ∪{v1, v6, v7, v8}. As
will be understood, when another MA tries to form a new cycle
using one of these nodes in U , the new cycle and C3 share
some node, which means that those cycles are not disjoint
with each other. Also, the arc set A is updated when the new
destination is finally fixed (line 9). If there exists no possible
destination for an MA that satisfies all the conditions, the MA
is delegated to the Minimal-add algorithm (line 15).

C. Minimal-add Algorithm

The Minimal-add algorithm (shown in Algorithm 2) deals
with the arcs for which the ∆H algorithm cannot find any
destination. The edges satisfy either of the following cases: 1)
The node v does not belong to any cycles: C(v) = ∅, or 2) All
the nodes in the cycles of C(v) are already used to compose
new cycles by other MAs.

D. Complexity Analysis

The complexity of our heuristic is sensitive to the number
of cycles in an input interdependent network. It is know
that Johnson’s algorithm finds all elementary cycles within
O((|V | + |E|)(|C(G)| + 1)). The ∆H-algorithm determines
a new destination after l

2 × C(G) iterations for each MA, in
the worst case. When only one cycle whose size is 2 exists
in the input and the other nodes are supported by the cycle,
the size of the set M becomes |E| − 2. It is obvious that the
complexity of the Minimal-add algorithm is O(1), so the worst
case analysis takes the case where all MAs are reallocated
by the ∆H-algorithm. Thus, O((|V | + |E|)(|C(G)| + 1)) +
O((|E| − 2)(d l2e × |C(G)|)). Assuming the maximum hop l
is small enough to be considered as a constant, the overall
complexity of our heuristic becomes O((|V | + |E|)|C(G)|).
Note that the assumption on l is valid with our strategy, which
tries to increase disjoint directed cycles in a given graph.

VI. SIMULATION

A. Network Topology

The performance of the proposed algorithm is analyzed
in random directed bipartite graphs that contain at least one
directed cycles. Assuming the situation in which a current
interdependent network is normally working, each node is
either a member of some cycle or reachable from a node
in a cycle through some directed path in an input graph.
Because our algorithm only concerns the dependency arcs, any
interdependent network is represented as a directed bipartite
graph whose arcs connect a pair of different types of nodes.

Each random bipartite graph is generated by specify-
ing the following parameters: |Vi|, l, maxv∈V degin(v) and
minv∈V degin(v). In order to observe the performance in
different conditions, experiments are conducted in interde-
pendent networks whose constituent graphs have identical
number of nodes: |V1| = |V2|. Also, some variations in relative
differences between the size of each graph are also taken into
account: |V1| = |V2|

q (q ∈ Z>0). The degree of each node
is determined based on the uniform distribution between the
given maximum and minimum incoming degree.

B. Evaluation

The survivability of the given, restructured and randomly
reassigned interdependent networks are illustrated in our re-
sults. In addition to the survivability of the restructured graphs
found by our algorithm, the results show the survivability of
networks whose MAs are randomly relocated with the uniform
distribution over all the nodes in the other constituent graph
from the constituent graph that includes the source of an MA.

However, calculating the size of the cycle hitting set is know
as NP-complete even in bipartite graphs. Our evaluation is
conducted using a well-known approximation algorithm whose
approximation factor is ln |V |+ 1 [13].

Furthermore, the density of a given graph G = (V,A)

defined by |A|∏
i |Vi| is used to examine the relationship between

the survivability improvement, and the given maximum and
minimum degrees.

Algorithm 2 Minimal-add(G, (v, w))
Input: interdependent network (directed graph) G = (V,A),

an arc (v, w)
1: pick (u, v) ∈ Ain(v) (randomly)
2: A← A \ (v, w) ∪ (v, u)

C. Results

Fig. 8 and 9 illustrate the survivability of the given and
restructured graphs with identical and halved size constituent
graphs, respectively. In both cases, our method demonstrates
greater improvements of the survivability compared to the
random assignment. The survivability of the original graphs
|H(G)| maintains a similar value regardless of the size of
graphs, though the survivability of the graphs restructured by
our method |H(G′)| steeply increases along with the size of
the graph. Since, in the original graph, arcs are randomly
added, it could be difficult to form larger directed cycles in
the original graphs G. Therefore, it is reasonable that the
number of disjoint cycles indicates the tendency to stay within
a similar range of values. On the other hand, there would
exist more MAs in larger graphs, because these graphs have
more arcs that are not in directed cycles. This results in
dramatic enhancement of the survivability in larger graphs.
The difference caused by the given maximum hop l for our
algorithm remains small over all sizes of a graph.

Fig. 10 indicates the relationship between the density of
graphs and ∆H := |H(G)| − |H(G′)|, the amount of surviv-
ability improvement by our method and the random reassign-
ment. In networks with lower density, our method succeeds in
increasing the survivability. An observed general trend of our
method is the gradual decrease in ∆H in accordance with the
density. This trend seems to be induced by the fact that the
graphs with more arcs have a higher possibility of composing
cycles even in the original topology. This implies that graphs
with higher density have fewer MAs that can form new disjoint
cycles. On the other hand, the random reassignment does not
demonstrate its effectiveness for the improvement in graphs
with any density, which is the same result from Fig. 8 and
9. Moreover, the random assignment sometimes decreases the
survivability (∆H < 0). It is conceivable that the reassignment
connects two (or more) existing disjoint cycles and make it
possible to decompose all these cycles by the removal of a
node. This result implies that imprudent restructuring of the
dependencies would cause more fragility of interdependent
networks.

VII. DISCUSSIONS

One interesting fact is that the results are not influenced
much by the maximum hop l. In [14], it is discussed, as
a motivating example, that multiple smaller directed cycles
tend to increase the robustness because of their independence.
However, in terms of total failures, small changes of l are not
likely to impact the survivability unless the changes violate
the disjointness of newly formed cycles.

5

10

15

20

25

30

35

40

20-20 30-30 40-40 50-50 60-60 70-70 80-80 90-90 100-100

S
u
rv
iv
ab

il
it
y
|H

|(
ap

p
ro
x
im

at
ed

)

The number of vertices |V1| and |V2|

Original
Restructured (l = 1)
Restructured (l = 3)

Random

Fig. 8. Survivability of Interdependent Networks Before/After the improve-
ment under |V1| = |V2|, maxv∈V degin(v) = 4, and minv∈V degin(v) =
2, and l = 1, 3.

0

5

10

15

20

25

30

20-10 30-15 40-20 50-25 60-30 70-35 80-40 90-45 100-50

S
u
rv
iv
a
b
il
it
y
|H

|(
ap

p
ro
x
im

at
ed

)

The number of vertices |V1| and |V2|

Original
Restructured (l = 1)
Restructured (l = 3)

Random

Fig. 9. Survivability of Interdependent Networks Before/After the improve-
ment under |V1| =

|V2|
2

, maxv∈V degin(v) = 4, minv∈V degin(v) = 2,
and l = 1, 3.

Even though our work does not aim to reduce the range of
a cascading failure as mentioned in Section IV-A, it is also
observed that the increase in the average number of failed
nodes after a single node failure is suppressed approximately
within 0.15 nodes with any parameter settings. For instance,
in interdependent networks with |V1| = |V2| = 50 in Fig. 8,
the average number of failed nodes approximately increases
from 0.348 to 0.475 by our restructuring. Thus, it could be
said that our method does not much deteriorate robustness of
the networks with respect to the scale of single node failures.

Additionally, our method seems simple enough to be imple-
mented in the clustered cyber-physical system model discussed
in [8]. This model exploits node clustering where nodes within
a certain cluster can have dependency only with the nodes in
the specific clusters in order to capture the physical limitations
such as distance and administrative issues of infrastructure
networks. When multiple companies collaboratively conduct
operations of an entire system, the domain of which each
company takes care should be independent from the others.
Extracting a subgraph corresponding to the operation area of
each company, our method can find MAs for each domain
while it could reduce chances of more relocations.

VIII. CONCLUSION

This paper addresses the design problem of survivable
interdependent networks under some constraints relating to the

0

5

10

15

20

25

0 0.05 0.1 0.15 0.2 0.25

∆
H

(a
p
p
ro
x
im

a
te
d
)

The Density of a Graph

Restructured
Random

Fig. 10. The Relationship between Graph density and ∆H .

existence of legacy systems during restructuring. Based on the
definition of the survivability proposed in a related work, it
is claimed that the increase of disjoint cycles could enhance
the survivability. The proposed heuristic tries to compose
new disjoint cycles by distinguishing the dependencies whose
relocations do not influence ongoing operations of existing
systems. Our simulations indicate that the proposed heuristic
succeeds in increasing the survivability especially in networks
with fewer dependencies.

REFERENCES

[1] M. Ouyang, “Review on modeling and simulation of interdependent
critical infrastructure systems,” Reliability Engineering & System Safety,
vol. 121, no. Supplement C, pp. 43 – 60, 2014.

[2] D. H. Shin, D. Qian, and J. Zhang, “Cascading effects in interdependent
networks,” IEEE Network, vol. 28, pp. 82–87, July 2014.

[3] A. Berizzi, “The Italian 2003 blackout,” in IEEE Power Eng. Soc.
General Meeting, 2004., pp. 1673–1679 Vol.2, June 2004.

[4] S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and S. Havlin,
“Catastrophic cascade of failures in interdependent networks,” Nature,
vol. 464, pp. 1025–1028, Apr 2010.

[5] S. Tauch, W. Liu, and R. Pears, “Measuring cascade effects in inter-
dependent networks by using effective graph resistance,” in 2015 IEEE
Conf. on Comput. Commun. (INFOCOM) WKSHPS, pp. 683–688, April
2015.

[6] A. Sen, A. Mazumder, J. Banerjee, A. Das, and R. Compton, “Identifi-
cation of k most vulnerable nodes in multi-layered network using a new
model of interdependency,” in 2014 IEEE Conf. on Comput. Commun.
(INFOCOM) WKSHPS, pp. 831–836, April 2014.

[7] Y. Zhao and C. Qiao, “Enhancing the robustness of interdependent cyber-
physical systems by designing the interdependency relationship,” in 2017
IEEE Int. Conf. on Commun. (ICC), pp. 1–6, May 2017.

[8] M. Rahnamay-Naeini, “Designing cascade-resilient interdependent net-
works by optimum allocation of interdependencies,” in 2016 Int. Conf.
on Comput., Netw. and Commun. (ICNC), pp. 1–7, Feb 2016.

[9] A. Sturaro, S. Silvestri, M. Conti, and S. K. Das, “Towards a realistic
model for failure propagation in interdependent networks,” in 2016 Int.
Conf. on Comput., Netw. and Commun. (ICNC), pp. 1–7, Feb 2016.

[10] M. Parandehgheibi and E. Modiano, “Robustness of interdependent
networks: The case of communication networks and the power grid,”
in 2013 IEEE Global Commun. Conf. (GLOBECOM), pp. 2164–2169,
Dec 2013.

[11] M. Yannakakis, “Node-deletion problems on bipartite graphs,” SIAM
Journal on Comput., vol. 10, no. 2, pp. 310–327, 1981.

[12] D. B. Johnson, “Finding all the elementary circuits of a directed graph,”
SIAM Journal on Comput., vol. 4, no. 1, pp. 77–84, 1975.

[13] V. Chvatal, “A greedy heuristic for the set-covering problem,” Mathe-
matics of Operations Research, vol. 4, no. 3, pp. 233–235, 1979.

[14] Y. Zhao and C. Qiao, “Enhancing the robustness of interdependent cyber-
physical systems by designing the interdependency relationship,” in 2017
IEEE Int. Conf. on Commun. (ICC), pp. 1–6, May 2017.

